Improved Harris Combined With Clustering Algorithm for Data Traffic Classification
نویسندگان
چکیده
Aiming at the problem that data traffic in intelligent wireless communication system presents complex characteristics such as burstiness and self-similarity, which leads to low classification accuracy of existing model for traffic, a method based on improved Harris Eagle algorithm combined with fuzzy C-means clustering is proposed. The maps samples individuals, finds optimal position through multiple iterations algorithm, uses this initial center point guide classification. simulation shows that, compared traditional method, particle swarm gray wolf has better intra-class compactness inter-class separation sample set. Meanwhile, recall rate are both about 90 percent.
منابع مشابه
An improved opposition-based Crow Search Algorithm for Data Clustering
Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...
متن کاملUse of the Improved Frog-Leaping Algorithm in Data Clustering
Clustering is one of the known techniques in the field of data mining where data with similar properties is within the set of categories. K-means algorithm is one the simplest clustering algorithms which have disadvantages sensitive to initial values of the clusters and converging to the local optimum. In recent years, several algorithms are provided based on evolutionary algorithms for cluster...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملuse of the improved frog-leaping algorithm in data clustering
clustering is one of the known techniques in the field of data mining where data with similar properties is within the set of categories. k-means algorithm is one the simplest clustering algorithms which have disadvantages sensitive to initial values of the clusters and converging to the local optimum. in recent years, several algorithms are provided based on evolutionary algorithms for cluster...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2022
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2022.3188866